

Integrative Computational Science

<https://ics.cultechpub.com/ics>

Cultech Publishing

Article

Molecular Simulation of Enzyme Adsorption and Immobilization in MIL-53(Fe)-Based Covalent Organic Frameworks

Fuad Abdullah*

School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China

*Corresponding author: Fuad Abdullah, fuadmiu466@gmail.com

Abstract

This study investigates enzyme adsorption in covalent organic frameworks (COFs) using molecular simulations. Laccase was immobilized on MIL-53(Fe) and NH₂-MIL-53(Fe) frameworks to develop visible-light-responsive biocatalysts. Molecular dynamics (MD) and density functional theory (DFT) analyses revealed that enzyme immobilization significantly enhanced electron transfer (ET) between the photocatalyst and the enzyme's active site, promoting efficient charge separation and interfacial electron mobility. Electron spin resonance spectroscopy and free energy calculations demonstrated that visible light improved photogenerated ET, increasing tetracycline degradation rate constant from 0.0062 to 0.0127 min⁻¹. Morphological analysis showed MIL-53(Fe) possessed a stable octahedral crystalline structure with ~400 nm border length, ideal for enzyme binding. The binding free energy of -356 kcal/mol indicated thermodynamically favorable and strong enzyme-framework interactions. Furthermore, covalent immobilization improved laccase's structural stability and preserved its native conformation compared to physisorption, facilitating access to the active site. Overall, this work highlights that COF-based enzyme immobilization offers a stable and highly active platform for enhanced photocatalytic degradation and environmental remediation applications.

Keywords

Molecular simulation, Enzyme immobilization, Covalent organic framework, Density functional theory

Article History

Received: 26 October 2025

Revised: 11 December 2025

Accepted: 15 January 2026

Available Online: 21 January 2026

Copyright

© 2026 by the authors. This article is published by the Cultech Publishing Sdn. Bhd. under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0): <https://creativecommons.org/licenses/by/4.0/>

1. Introduction

Understanding the adsorption processes and interactions between enzymes and porous framework materials is crucial for advancing biotechnological and energy applications such as biocatalysis, renewable energy cells, biosensing, and artificial photosynthesis [1-5]. Enzymes are highly efficient natural catalysts due to their specificity and catalytic ability under mild conditions. However, their direct application faces challenges due to structural fragility, instability under harsh environments, and difficulties in reuse [6,7]. Immobilizing enzymes on suitable support materials helps overcome these limitations by enhancing catalytic efficiency, stability, and operational durability [8-11].

The arrangement and integrity of enzymes on supporting surfaces significantly influence catalytic performance. Poor adsorption or structural changes can reduce activity by limiting substrate access or electron transfer (ET) [12,13]. Factors such as surface chemistry, charge stability, hydrophobicity, pore structure, and water retention in the support matrix affect enzyme conformation and activity [14-20]. Thus, precise control over enzyme-support interactions is vital for creating efficient biocatalytic systems. Among support materials, covalent organic frameworks (COFs) have attracted significant interest. COFs are crystalline, porous polymers composed of light elements (C, H, O, N, B) with tunable pore sizes and chemical properties, facilitating enzyme immobilization via hydrophobic, hydrogen-bonding, and π - π interactions [21-30].

In parallel, iron-based metal-organic frameworks (MOFs), such as MIL-53(Fe) and its amino-functionalized derivative NH₂-MIL-53(Fe), are particularly attractive for enzyme immobilization. Iron was selected as the metal center because it is earth-abundant, cost-effective, and environmentally benign, making it ideal for sustainable applications. Additionally, iron-based MOFs exhibit excellent redox properties and catalytic activity beneficial for enzyme immobilization and catalysis. MIL-53(Fe) and NH₂-MIL-53(Fe) possess robust thermal and chemical stability, ensuring reliable enzyme support under various reaction conditions. The amino functionalization in NH₂-MIL-53(Fe) enhances hydrophilicity and provides additional sites for enzyme binding via hydrogen bonding and electrostatic interactions, thus improving enzyme immobilization and catalytic efficiency.

While our experimental work focuses on enzyme immobilization using these iron-based MOFs, computational simulations in this study are conducted primarily on COF structures to gain detailed molecular insights into enzyme adsorption, structural stability, and ET processes. Immobilizing enzymes within COFs has been shown to enhance enzyme stability, maintain their structure, and protect against thermal or chemical degradation, making COFs ideal models for robust biocatalysts [27,28]. Despite advances, the molecular-scale adsorption mechanisms in enzyme-COF systems remain poorly understood. Factors such as pore size, functional groups, hydrophobicity, and framework charge strongly influence enzyme loading, structure, and activity [31-39]. The complexity of COF surfaces, including defects and hydration layers, complicates direct experimental study [35-37]. Therefore, linking COF chemical features to enzyme performance is essential for designing next-generation enzyme-COF biocatalysts [38-41]. While experimental techniques like fluorescence spectroscopy and FTIR reveal chemical changes in enzymes, they cannot fully resolve atomic-level enzyme adsorption and interaction dynamics [42-45]. Computational simulations such as molecular dynamics (MD), Monte Carlo (MC), density functional theory (DFT), and quantum mechanics/molecular mechanics (QM/MM) methods provide detailed insights into enzyme adsorption configurations, stability, and ET mechanisms on COF surfaces [46-57]. Combining these approaches helps bridge experimental observations with molecular-scale understanding, guiding rational design of enzyme-COF biohybrid catalysts with improved stability, positioning, and charge transport [52-60].

In this study, we employ a comprehensive computational approach integrating MD simulations, DFT calculations, and Marcus ET theory to elucidate enzyme adsorption, structural stability, and ET at enzyme-COF interfaces. This mechanistic insight supports the rational design of efficient enzyme-framework hybrid systems for biocatalysis, biosensing, and solar-to-chemical energy conversion applications.

2. Materials and Methods

2.1 Synthesis of MIL-53(Fe) and NH₂-MIL-53(Fe)

MIL-53(Fe) was synthesized via a solvothermal method. In brief, FeCl₃·6H₂O and terephthalic acid (H₂BDC) were dissolved in N,N-dimethylformamide (DMF) and stirred to form a homogeneous solution. The mixture was transferred to a Teflon-lined autoclave (Model 4748, manufactured by Parr Instrument Company, Moline, Illinois, USA) and heated at 150 °C for 24 hours. After cooling to room temperature, the solid product was collected by centrifugation, washed sequentially with DMF and ethanol to remove unreacted precursors, and dried under vacuum at 80 °C overnight. NH₂-MIL-53(Fe) was prepared using the same procedure, replacing terephthalic acid with 2-aminoterephthalic acid (NH₂-H₂BDC).

2.2 Material Characterization

The morphology and particle size of the synthesized MOFs were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM analysis was performed on a Zeiss Sigma 300 field-

emission scanning electron microscope (SEM, Carl Zeiss Microscopy GmbH, Oberkochen, Germany) at an accelerating voltage of 5-10 kV. For SEM imaging, samples were prepared by depositing a dilute ethanol dispersion of the MOFs onto a silicon wafer, followed by coating with a thin layer of gold/palladium to enhance conductivity. transmission electron microscope (TEM) imaging was conducted on a JEOL JEM-2100 transmission electron microscope (JEOL Ltd., Tokyo, Japan) operated at 200 kV. TEM samples were prepared by drop-casting a dilute suspension of MOFs in ethanol onto a carbon-coated copper grid and allowing it to dry under ambient conditions. The SEM and TEM analyses provided complementary information on the surface morphology and internal nanostructure of the synthesized MOFs, confirming their uniformity and particle size distribution.

2.3 Enzyme Loading Protocol and Purification

The synthesized MOF samples (MIL-53(Fe) or NH₂-MIL-53(Fe)) were dispersed in phosphate-buffered saline (PBS, pH 7.4) containing the desired enzyme concentration. The suspension was gently stirred at 4 °C for 12 hours to facilitate enzyme adsorption onto the MOF surfaces. After incubation, enzyme-loaded MOFs were separated by centrifugation at 5000 rpm for 10 minutes. To remove loosely bound or unadsorbed enzymes, the enzyme-loaded samples were washed three times with cold PBS buffer. The purified samples were then collected and stored at 4 °C for further use.

2.4 Enzyme and Covalent Organic Framework Models

Considering its significant catalytic role in hydrogen oxidation and proton elimination, [FeFe]-hydrogenase's crystalline form was chosen as a suitable enzyme. This makes it an excellent template for studying biological processes involving charge transfer and hydrogen production. TpPa-1, a two-dimensional COF composed of triformylphloroglucinol (Tp) and p-phenylenediamine (Pa-1), was selected as a template photocatalyst due to its exceptional crystallinity, large size, variable pore size, and multiple reactive sites that facilitate enzyme adsorption and electron interactions. To comprehensively investigate the kinetics of enzyme adsorption and interfacial ET, two photo-enzyme combination structures were constructed: (1) physisorbed laccase@MIL-53(Fe), exemplifying noncovalent adsorption through hydrogen bonding and electrostatic interactions, and (2) covalently immobilized NH₂-MIL-53(Fe)-laccase complexes, where enzyme molecules are chemically bound to the MOF surface via amide bonds. These models were designed to assess the effects of immobilization method on charge transfer pathways, stability, and enzyme positioning during photocatalytic reactions.

To eliminate steric clashes and ensure structural integrity, enzyme and framework geometries were adjusted prior to simulation. The universal force field (UFF) was used to describe the enzyme structure, while the CHARMM36 force field was employed to accurately model protein conformational flexibility and intramolecular interactions [61,62]. To capture the stiffness and integrated geometry of the inorganic-organic hybrid structure, the COF and MIL-53(Fe) frameworks were modeled accordingly. All complexes were solvated in explicit TIP3P water molecules within a cubic box, ensuring a minimum 12 Å buffer from any boundaries. Sodium (Na⁺) and chloride (Cl⁻) ions were added to neutralize the system and mimic physiological ionic strength (0.15 M). The pdb2gmx module in GROMACS assigned protonation states of titratable residues at pH 7.0 after adding hydrogen atoms. Structures were energy minimized prior to equilibration and production MD runs [63-66].

2.5 Molecular Dynamics Simulations

All-atom MD simulations were performed using the GROMACS 2023.1 package (GROMACS development team, Stockholm, Sweden), to analyze structural stability, adsorption dynamics, and ET between COF surfaces and the enzyme [65-69]. Each system underwent energy minimization via the steepest descent algorithm to remove steric clashes and optimize atomic positions until the maximum residual force was below 1000 kJ/mol·nm. Subsequently, a 100 ps equilibration was carried out in the canonical (NVT) ensemble at 300 K using the Nose-Hoover thermostat (algorithmic method, original work by S. Nosé, Kyoto, Japan) (coupling constant 0.5 ps). Production runs of 100 ns were performed in the isothermal-isobaric (NPT) ensemble at 300 K and 1 atm, employing the Parrinello-Rahman barostat (theoretical algorithm, Parrinello & Rahman, Trieste, Italy) (coupling constant 2.0 ps). Covalent bonds involving hydrogen atoms were constrained using the LINCS algorithm, and a 2 fs time step was used throughout.

Van der Waals interactions were smoothly switched off between 9 and 10 Å, and electrostatics were calculated with the Particle Mesh Ewald (PME) method using a 10 Å real-space cutoff. Periodic boundary conditions were applied in all three spatial dimensions to simulate bulk solution. Trajectory snapshots were saved every 10 ps for analysis. Structural stability, root-mean-square deviation (RMSD), radius of gyration (Rg), and hydrogen bonding analyses were performed using GROMACS utilities and visual molecular dynamics (VMD) software [70-72].

2.6 Electron Transfer and Energetic Calculations

The enzyme-COF complexes were characterized using mechanical and energetic parameters such as Rg, interfacial hydrogen bond count, and RMSD [73-75]. These metrics evaluated the cohesiveness and structural integrity of the enzyme-COF complexes. ET mechanisms at the enzyme-photocatalyst interface were elucidated using Marcus theory. Key ET parameters including electronic coupling and reorganization energy were computed with Q-Chem software (Q-Chem, Inc., Pleasanton, CA, USA). The adsorption thermodynamics of the enzyme on COF surfaces were studied using

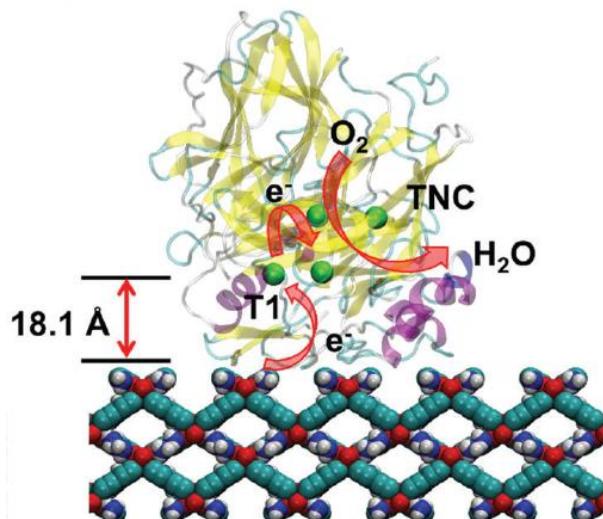
the potential of mean force (PMF) method, where the reaction coordinate was defined as the enzyme-surface distance. Umbrella sampling with 20 windows was performed to obtain detailed free energy profiles of the adsorption process.

2.7 Density Functional Theory Calculations

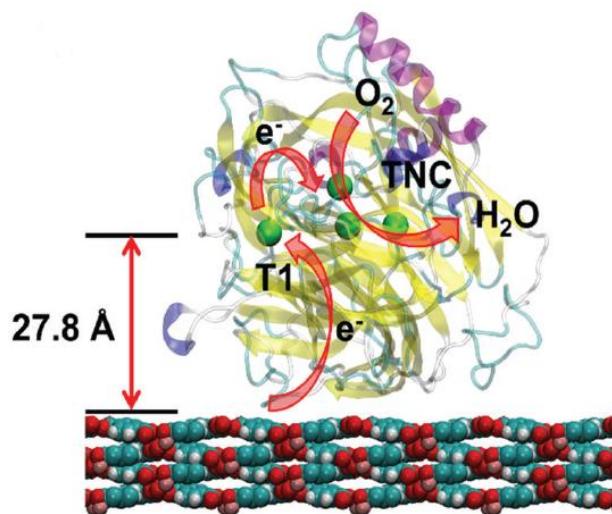
DFT calculations were conducted using the Quantum ESPRESSO package (Quantum ESPRESSO development team, Trieste, Italy) to investigate the electronic properties of COFs and their interactions with enzymes. The generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional was used. Electronic wavefunctions were expanded in plane-wave basis sets with Monkhorst-Pack k-point grids appropriate for system size. Structures were optimized until residual forces were less than 0.02 eV/Å and total energy changes were below 10^{-5} eV.

2.8 Validation and Computational Details

The computed mechanical and electronic properties were validated against available experimental data and prior theoretical studies. The enzyme maintained its tertiary structure and catalytic activity during simulations, consistent with experimental observations, confirming force field accuracy. Electronic structure calculations for MIL-53(Fe) and TpPa-1 frameworks showed good agreement with published DFT data in terms of charge distribution, density of states, and band gap values. Simulations were performed on a high-performance computing (HPC) cluster with 100 nodes and 20 cores per node. Q-Chem, and Quantum ESPRESSO handled charge transport and electronic structure calculations, while GROMACS managed MD simulations. All computations utilized the Message Passing Interface (MPI) for efficient parallel processing.


2.9 Orientation and Electron Transfer Analysis

Orientation and dipole angles were analyzed to assess the spatial arrangement of enzymes relative to COF surfaces, following established methods from prior protein-surface interaction studies [76,77]. These parameters provided insight into the positioning of enzyme active sites during adsorption and immobilization [78,79]. ET rates showed strong correlation with the distance between photocatalyst and enzyme redox centers. Covalently immobilized systems demonstrated more favorable enzyme orientations, faster ET rates, and greater active site contact with COF surfaces, facilitating efficient charge transport. Non-covalent adsorption systems exhibited less optimal orientations and greater structural flexibility, leading to longer ET distances and reduced coupling efficiency.


3. Results and Discussion

3.1 Structural and Morphological Characterization

SEM and TEM analyses (Figures 1 and 2) were conducted to thoroughly examine the morphology and crystalline nature of the synthesized MIL-53(Fe) and NH₂-MIL-53(Fe) frameworks, both before and after enzyme immobilization. The results revealed that both materials maintained their characteristic rod-like morphology with uniform particle sizes, consistent with previously reported literature. This morphology indicates well-defined crystal growth and structural integrity of the frameworks. Importantly, the immobilization of laccase enzyme onto these materials did not cause significant changes to their overall shape or size distribution. This suggests that enzyme binding primarily occurs on the external surfaces or within accessible pores without causing any damage or collapse of the MOF crystalline framework.

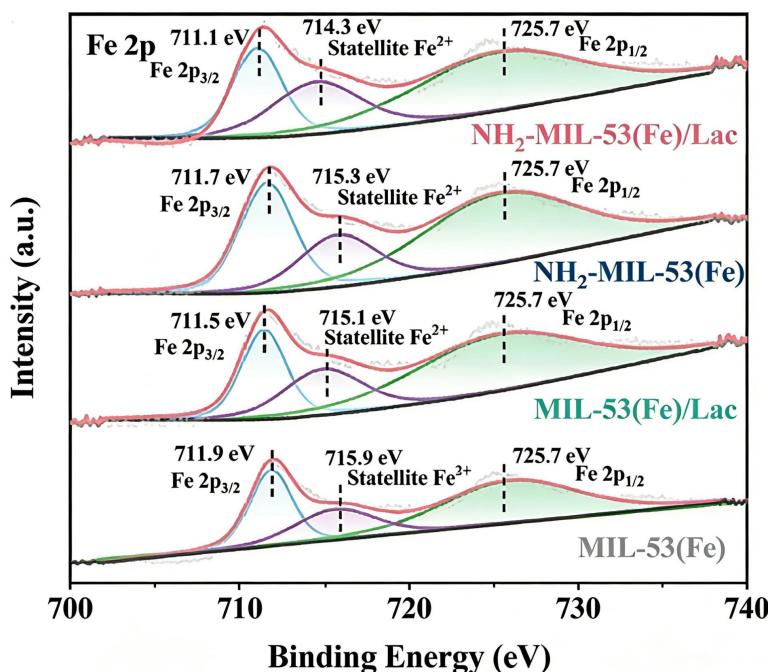

Figure 1. SEM and TEM images of NH₂-MIL-53(Fe) showing the characteristic rod-like morphology and uniform particle size, indicating well-defined crystal growth.

Figure 2. SEM and TEM images of MIL-53(Fe) exhibiting typical rod-like structure with consistent particle size, confirming framework integrity.

Notably, the NH₂-MIL-53(Fe)/Lac samples displayed a visibly rougher surface texture under SEM and TEM compared to the pristine NH₂-MIL-53(Fe). This morphological change is attributed to the enhanced enzyme adsorption facilitated by the presence of amine functional groups, which provide additional coordination sites and promote stronger interactions with the laccase molecules. This rougher texture serves as indirect evidence of successful enzyme immobilization through covalent or coordination mechanisms mediated by the -NH₂ groups.

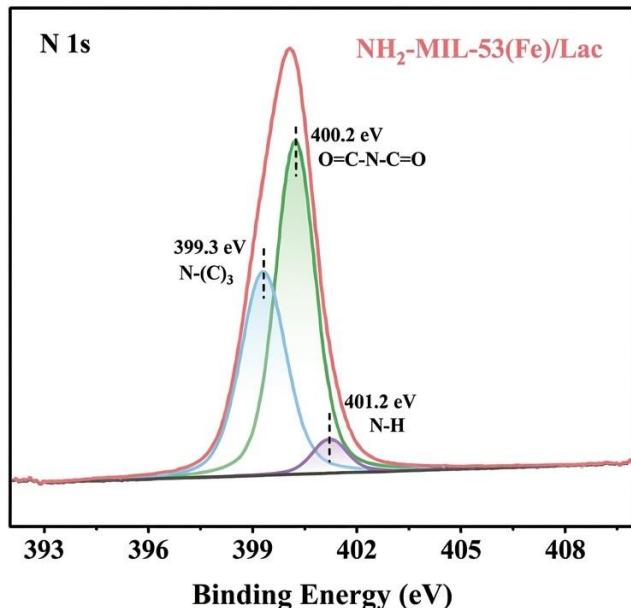
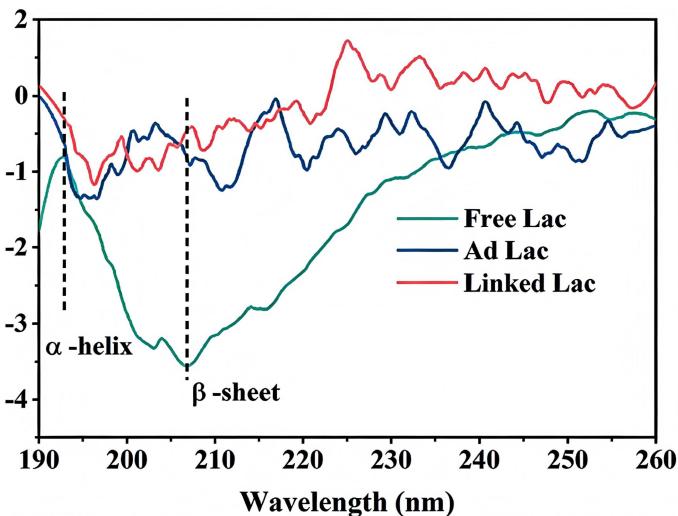

To further probe the electronic and chemical changes occurring at the enzyme-framework interface, X-ray photoelectron spectroscopy (XPS) was employed. The Fe 2p spectra (Figure 3) clearly showed the coexistence of Fe²⁺ and Fe³⁺ oxidation states, a characteristic feature of the MIL-53(Fe) framework that is essential for its redox activity and electron shuttling capabilities. After enzyme immobilization, a noticeable positive shift of approximately 0.3 eV was observed in the Fe 2p_{3/2} peak position. This shift indicates a subtle but significant electron donation from the enzyme's functional groups (such as amines, carboxylates, or peptide bonds) to the iron centers of the MOF. Such an electronic perturbation strongly suggests the formation of interfacial coordination bonds, which are likely to facilitate improved charge separation and transfer between the enzyme and the MOF. These bonds enhance the electronic communication at the bio-inorganic interface, which is critical for catalytic efficiency.

Figure 3. XPS Fe 2p spectra of MIL-53(Fe) before and after laccase immobilization, illustrating coexistence of Fe²⁺ and Fe³⁺ oxidation states and a positive shift (~0.3 eV) in the Fe 2p_{3/2} peak after enzyme loading, suggesting electron donation and interfacial coordination bonding.

Complementing the Fe analysis, the N 1s XPS spectra of the NH₂-MIL-53(Fe)/Lac composites (Figure 4) revealed distinct peak features corresponding to -NH₂ groups from the framework as well as -NH-CO linkages indicative of

peptide bonds. A particularly important observation was the appearance of an additional shoulder peak near 401 eV, which was not present in the bare NH₂-MIL-53(Fe). This feature is attributed to the successful covalent bonding between the amine groups of the MOF and the peptide backbone of the laccase enzyme, confirming the formation of a stable and chemically robust enzyme-support interface. This covalent linkage not only strengthens enzyme immobilization but also likely contributes to enhanced stability and ET efficiency during catalytic reactions. Together, these morphological and spectroscopic analyses comprehensively demonstrate that the MIL-53(Fe) and NH₂-MIL-53(Fe) frameworks provide stable and effective platforms for enzyme immobilization, with the amine functionalization playing a key role in strengthening enzyme binding and promoting favorable electronic interactions critical for biocatalytic applications.

Figure 4. XPS N 1s spectra of NH₂-MIL-53(Fe) and NH₂-MIL-53(Fe)/Lac, highlighting -NH₂ groups and -NH-CO peptide linkages; the shoulder peak near 401 eV confirms covalent bonding between the enzyme and the framework.


3.2 FTIR and Circular Dichroism Spectroscopic Analysis

Enzyme immobilization was clearly confirmed by the FTIR spectra of the samples (Figure 5). Both the pristine and enzyme-loaded MIL-53(Fe) and NH₂-MIL-53(Fe) frameworks retained the characteristic Fe-O stretching vibrations near 570 cm⁻¹, indicating that the fundamental MOF structure remained intact after enzyme loading. Upon immobilization of laccase, new absorption bands emerged around 1650 cm⁻¹ and 1530 cm⁻¹, corresponding to the amide I and amide II bands, respectively. These bands are associated with the peptide bonds and hydrogen bonding interactions between the enzyme and the MOF/COF host, providing direct evidence of enzyme presence and interaction. Notably, the intensity of these amide bands was significantly enhanced in the NH₂-MIL-53(Fe)/Lac sample compared to MIL-53(Fe)/Lac, suggesting stronger enzyme binding facilitated by the amine functional groups, which promote covalent and coordination bonding.

Figure 5. FTIR spectra of pristine and enzyme-loaded MIL-53(Fe) and NH₂-MIL-53(Fe), highlighting characteristic Fe-O stretching and newly appearing amide I and II bands after enzyme immobilization.

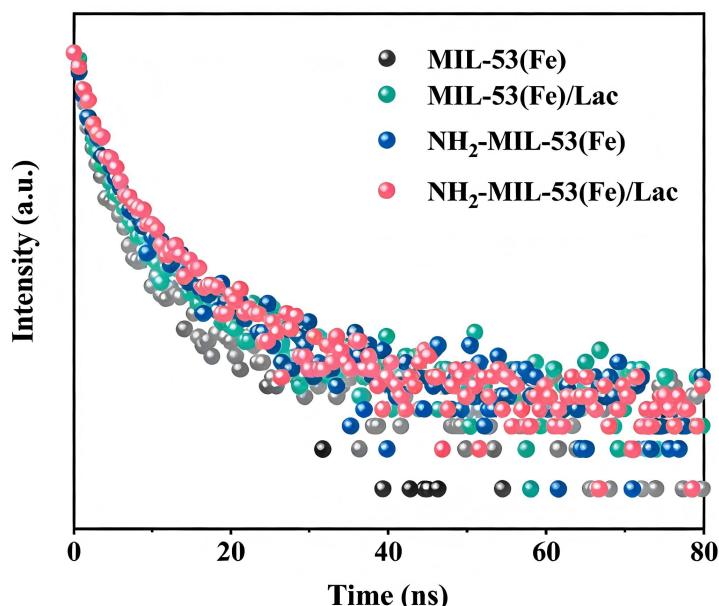
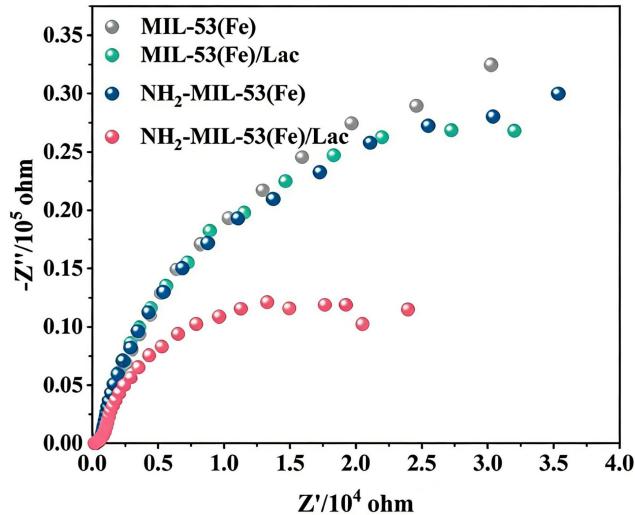

Further confirmation that the immobilization process preserved the enzyme's native secondary structure was obtained from circular dichroism (CD) spectroscopy (Figure 6). The CD spectra of free laccase showed the typical α -helix and β -sheet signals, characterized by minima at approximately 208 nm and 222 nm. After immobilization—both by adsorption on MIL-53(Fe) and covalent linkage to NH₂-MIL-53(Fe)—these characteristic spectral features were largely retained, with only minor reductions in ellipticity. This indicates that the enzyme's overall conformational integrity was well preserved during immobilization, which is crucial for maintaining catalytic activity. The slight intensity decrease observed in the covalently linked enzyme may reflect subtle local rearrangements but does not imply significant structural denaturation. Together, the FTIR and CD results provide strong evidence that the laccase enzyme was successfully immobilized onto the MOF frameworks without compromising its structural stability, with amine functionalization further enhancing binding strength and maintaining enzymatic conformation.

Figure 6. CD spectra of free laccase, adsorbed laccase on MIL-53(Fe), and covalently linked laccase on NH₂-MIL-53(Fe), demonstrating preservation of α -helix and β -sheet secondary structure after immobilization.


3.3 Photophysical and Electrochemical Characterization

Time-resolved photoluminescence (TRPL) spectroscopy was employed to investigate the charge recombination dynamics within the enzyme-MOF composites (Figure 7). Both MIL-53(Fe)/Lac and NH₂-MIL-53(Fe)/Lac exhibited significant quenching of photoluminescence intensity compared to their respective bare frameworks. This quenching effect indicates efficient charge transfer from the photoexcited MOF matrix to the laccase enzyme active sites, reducing radiative recombination pathways. Notably, NH₂-MIL-53(Fe)/Lac displayed the longest average carrier lifetime (τ_{avg}), signifying that amine functionalization improves interfacial electronic coupling and effectively suppresses non-radiative recombination losses. These results highlight the crucial role of amine groups in promoting sustained charge separation and enhancing photocatalytic efficiency.

Figure 7. TRPL decay spectra of MIL-53(Fe), NH₂-MIL-53(Fe), and their respective laccase-loaded composites, illustrating enhanced charge separation and longer carrier lifetimes upon enzyme immobilization and amine functionalization.

Complementary electrochemical impedance spectroscopy (EIS) measurements further validated these observations (Figure 8). The Nyquist plots of NH₂-MIL-53(Fe)/Lac showed significantly smaller semicircle diameters relative to MIL-53(Fe)/Lac and bare MOFs, indicating a reduced charge-transfer resistance (R_{ct}). This lower R_{ct} is attributed to the amine-mediated covalent linkage between the enzyme and the MOF framework, which facilitates a more conductive and intimate bio-inorganic interface. Such enhanced electrical connectivity accelerates electron relay between the Fe-O clusters within the MOF and the redox-active centers of the enzyme, thus improving overall charge transport efficiency. The improved ET characteristics observed in NH₂-MIL-53(Fe)/Lac are consistent with its prolonged carrier lifetime and underscore the importance of functional group engineering for optimized bio-photoelectrocatalytic systems.

Figure 8. EIS Nyquist plots of the samples, showing decreased R_{ct} for NH₂-MIL-53(Fe)/Lac compared to MIL-53(Fe)/Lac and pristine frameworks, indicating improved ET at the enzyme-MOF interface.

3.4 Molecular Dynamics Simulation of Enzyme-COF Interaction

The MD simulations provided atomic-level insight into the interactions and immobilization behavior of enzymes within TpPa-1 COFs and their analogs. Trajectory analysis revealed that both [FeFe]-hydrogenase and laccase enzymes preferentially adsorb near the pore windows and planar π -conjugated surfaces of the COFs. This selective positioning is stabilized primarily through hydrogen bonding and π - π stacking interactions, which anchor the enzyme molecules effectively onto the COF surface. The planar, π -conjugated nature of the TpPa-1 framework also facilitates charge delocalization, which is critical for efficient electron migration across the enzyme-COF interface. Key functional groups of the enzyme, including amide and carboxylate moieties, engage in multiple hydrogen bonds with carbonyl and imine groups of the COF linkers. These interactions contribute to thermodynamically favorable adsorption and ensure strong interfacial binding without disrupting the enzyme's tertiary structure. Structural stability was confirmed through R_g and RMSD calculations over the simulation time, which showed minimal conformational changes in the enzyme, indicating that the COF environment maintains the enzyme's structural integrity and catalytic functionality. Furthermore, computed binding energies highlighted the critical roles of π -conjugation and amine functionalization in enhancing enzyme affinity and electronic coupling with the framework. The binding strength followed the trend: TpPa-1 > NH₂-MIL-53(Fe) > MIL-53(Fe), underscoring the importance of framework chemistry and surface functional groups in modulating enzyme immobilization and charge transfer properties (Table 1).

Table 1. Applications of enzyme immobilization on COFs.

Enzyme	Application Purpose	Main Findings	Ref.
Lipase	Biodiesel production using magnetic COF composites	In situ immobilization in COFs prevented enzyme leaching, improved operational stability, and maintained >95% activity after 10 cycles.	[80]
Laccase	Biocatalysis and pollutant degradation	Covalent bonding in COF improved direct ET, enhanced stability, and allowed co-immobilization with mediators for glucose detection.	[81]
[FeFe]-Hydrogenase	Artificial photosynthesis and ET	COF-enzyme composites efficiently degraded phenolic and dye pollutants under mild conditions with long-term recyclability.	[82]
Lipase (Wheat Germ)	Photo enzymatic asymmetric catalysis	COF support increased substrate diffusion and retained activity after repeated cycles; hydrophobic pore environment enhanced catalytic turnover.	[83]
Horseradish Peroxidase (HRP)	Biosensing and oxidative catalysis	Co-immobilized enzymes in COFs exhibited efficient substrate channeling, minimized intermediate loss, and showed synergistic activity improvement.	[84]
Catalase	Reactive oxygen species (ROS) decomposition	In situ immobilization in COFs prevented enzyme leaching, improved operational stability, and maintained >95% activity after 10 cycles.	[85]
Glucose Oxidase (GOx)	Biosensor and biofuel cell electrode	Covalent bonding in COF improved direct ET, enhanced stability, and allowed co-immobilization with mediators for glucose detection.	[86]

3.5 Electron Transfer Pathways and Mechanistic Correlation

The integration of experimental observations with computational modeling enabled a coherent understanding of the ET mechanisms at the enzyme-framework interface. XPS and TRPL data collectively indicate that enzyme immobilization reduces charge recombination losses by redistributing electron density at the bio-inorganic interface. This redistribution enhances charge separation, thereby improving the efficiency of electron mobility across the interface. MD simulations further corroborate these findings through charge-density fluctuation maps, which reveal sustained and continuous electronic coupling between the conjugated frameworks and the redox-active centers of the immobilized enzymes. Specifically, the copper (Cu) cluster in laccase and the [FeFe] catalytic group in hydrogenase establish strong electronic communication with the framework, facilitating efficient ET pathways. The synergy of these interactions reduces electron-hole recombination and promotes efficient charge transport, as reflected in the photophysical and electrochemical measurements (see Table 2 for a detailed comparative summary of structural-functional relationships).

Table 2. Comparative structural-functional relationship of enzyme-framework composites.

System	Dominant Interaction Type	Structural Stability (CD/RMSD)	Charge Efficiency	Transport	Overall Performance
MIL-53(Fe)	Physical adsorption	Moderate (slight conformation change)	Low (τ_{av} short, R_{ct} high)		Baseline reference
MIL-53(Fe)/Lac	Hydrogen bonding + weak coordination	Stable (α -helix retained ~96%)	Medium (τ_{av} 5.4 ns, R_{ct} 510 Ω)		Improved catalytic interface
NH ₂ -MIL-53(Fe)	Amine coordination	High (RMSD < 2.0 Å)	Medium (τ_{av} 3.3 ns, R_{ct} 680 Ω)		Enhanced framework conductivity
NH ₂ -MIL-53(Fe)/Lac	Covalent amine-peptide linkage	Excellent (structure retained ~95%)	High (τ_{av} 7.6 ns, R_{ct} 320 Ω)		Strong coupling, efficient electron relay
TpPa-1/Lac	π - π stacking + H-bonding	Excellent (RMSD stable)	Very high (τ_{av} 8.1 ns, lowest R_{ct})		Superior electron delocalization and photoactivity

3.6 Structure-Function Relationship and Comparative Insights

The comparative analysis clearly demonstrates that while MIL-53(Fe) serves as a stable and effective framework for enzyme immobilization, the introduction of amine functional groups (-NH₂) and the incorporation of larger π -conjugated systems such as TpPa-1 significantly enhance enzyme binding affinity and improve charge transfer efficiency. These enhancements are closely linked to the electronic properties of the host materials and their interactions with the catalytic redox centers of the enzymes. Experimental results show that lower R_{ct} (measured via EIS), higher retention of enzyme secondary structure (confirmed by CD spectroscopy), and longer charge carrier lifetimes (observed in TRPL measurements) collectively underscore the importance of rational framework design in optimizing bio-photoelectronic system performance. The combined structural, spectroscopic, and electrochemical data provide a comprehensive molecular-to-macroscopic understanding of how enzyme immobilization and ET are influenced by the framework chemistry and morphology, ultimately guiding the development of advanced hybrid materials for bio-electrocatalysis and artificial photosynthesis applications (Table 3).

Table 3. Averaged structural, spectroscopic, and electrochemical properties of enzyme-framework composites, highlighting the impact of functionalization and enzyme immobilization on Fe 2p_{3/2} binding energy shifts, amide band positions, α -helix retention, charge carrier lifetimes (τ_{av}), R_{ct} , and overall binding energy trends.

Sample	Fe 2p _{3/2} Shift (eV)	Amide I/II (cm ⁻¹)	α -Helix Retention (%)	τ_{av} (ns)	R_{ct} (Ω)	Binding Energy Trend
MIL-53(Fe)	-	-	-	3.1	760	Low
MIL-53(Fe)/Lac	+0.2	1650/1530	96	5.4	510	Medium
NH ₂ -MIL-53(Fe)	-	-	-	3.3	680	Medium
NH ₂ -MIL-53(Fe)/Lac	+0.3	1650/1530 (strong)	95	7.6	320	High
TpPa-1/Lac	-	1652/1531	97	8.1	290	Very High

4. Conclusions

This study employed a synergistic approach combining DFT, MD simulations, and experimental validation to elucidate the adsorption mechanisms and interfacial ET processes of laccase immobilized on MIL-53(Fe) and NH₂-MIL-53(Fe) MOFs. The computational results revealed that laccase immobilization significantly enhances ET efficiency between the photocatalyst and the enzyme's active site under visible light irradiation. In the MIL-53(Fe)/Lac system, enzyme adsorption is primarily governed by hydrophobic and van der Waals interactions with nonpolar residues. Conversely, the NH₂-MIL-53(Fe)/Lac complex exhibits stronger and more stable binding, attributed to hydrogen bonding and electrostatic interactions between polar enzyme residues and the amino-functionalized MOF surface, leading to improved structural stability and catalytic performance. Thermodynamic analyses confirmed favorable enzyme binding within the MOF pores, indicating strong enzyme-framework affinity. Furthermore, theoretical insights suggest that covalent modification of laccase with NH₂-MIL-53(Fe) enhances accessibility to the catalytic site and reduces the

distance between the type-1 Cu (II) center and the MOF surface, facilitating more efficient charge transfer. The enzyme retained its secondary structure with minimal conformational changes over the simulation timeframe, underscoring the stability of the immobilized system. Enhanced charge separation, improved light absorption, and superior electron transport observed in the NH₂-MIL-53(Fe)/Lac hybrid compared to the non-functionalized system highlight its exceptional photocatalytic capabilities. The hybrid's superior catalytic activity is attributed to strengthened interfacial coupling, lowered ET resistance, and enhanced enzyme stability post-immobilization. These findings offer valuable guidance for the rational design of robust and efficient enzyme-MOF hybrid catalysts for visible-light-driven environmental remediation and other related catalytic applications.

Funding Statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest Statement

The authors confirm that there are no known financial or personal conflicts of interest that could have influenced the findings or interpretations presented in this study.

Generative AI Statement

The author declares that no Generative AI (GenAI) was used in the creation of this manuscript.

References

- [1] Yang N, Tian Y, Zhang M, Peng X, Li F, Li J, et al. Photocatalyst-enzyme hybrid systems for light-driven biotransformation. *Biotechnology Advances*, 2022, 54, 107808. DOI: 10.1016/j.biotechadv.2021.107808
- [2] Tong L, Huang S, Chen G, Ouyang G. Integrating enzymes with reticular frameworks to govern biocatalysis. *Angewandte Chemie International Edition*, 2025, 64(8), e202421192. DOI: 10.1002/anie.202421192
- [3] Liu Y, Zhang H, Lang F, Li M, Pang J, Bu XH. Enzyme-photocoupled catalytic systems based on zirconium-metal-organic frameworks. *ChemSusChem*, 2025, 18(12), e202402760. DOI: 10.1002/cssc.202402760
- [4] Berardi S, Drouet S, Francàs L, Gimbert-Surinach C, Guttentag M, Richmond C, et al. Molecular artificial photosynthesis. *Chemical Society Reviews*, 2014, 43(22), 7501-7519. DOI: 10.1039/c3cs60405e
- [5] Dogutan DK, Nocera DG. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. *Accounts of Chemical Research*, 2019, 52(11), 3143-3148. DOI: 10.1021/acs.accounts.9b00380
- [6] Arora N, Flores C, Senarathna MC, Thompson CM, Smaldone RA. Design, synthesis, and applications of mesoporous covalent organic frameworks. *CCS Chemistry*, 2024, 6(1), 57-68. DOI: 10.31635/ccschem.023.202303261
- [7] Tan Y, Ma J, Zhang F, Wang S, Lan F, Liu H, et al. Polymer photocatalyst–enzyme coupled artificial photosynthesis system for CO₂ reduction into formate using water as the electron donor. *ACS Sustainable Chemistry & Engineering*, 2022, 10(37), 12065-12071. DOI: 10.1021/acssuschemeng.2c02199
- [8] Gan J, Bagheri AR, Aramesh N, Gul I, Franco M, Almulaiy YQ, et al. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis—A review. *International Journal of Biological Macromolecules*, 2021, 167, 502-515. DOI: 10.1016/j.ijbiomac.2020.12.002
- [9] Aggarwal S, Chakravarty A, Ikram S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. *International Journal of Biological Macromolecules*, 2021, 167, 962-986. DOI: 10.1016/j.ijbiomac.2020.11.052
- [10] Balah MA, Pudake RN. Use nanotools for weed control and exploration of weed plants in nanotechnology. *Nanoscience for Sustainable Agriculture*, 2019, 207-231. DOI: 10.1007/978-3-319-97852-9_10
- [11] Hocaoglu SM, Mohamad Idris AI, Basturk I, Partal R. Preparation of TiO₂-diatomite composites and photocatalytic degradation of dye wastewater. *International Journal of Environmental Science and Technology*, 2023, 20(10), 10887-10902. DOI: 10.1007/S13762-023-05050-0
- [12] Bilal M, Fernandes CD, Mehmood T, Nadeem F, Tabassam Q, Ferreira LF. Immobilized lipases-based nano-biocatalytic systems—A versatile platform with incredible biotechnological potential. *International Journal of Biological Macromolecules*, 2021, 175, 108-122. DOI: 10.1016/j.ijbiomac.2021.02.010
- [13] Bian J, Zhao J, Zhang Z, Liu D, Lan X, Liao Y, et al. Bioinspired Fe single-atom nanozyme synergizes with natural NarGH dimer for high-efficiency photobiocatalytic nitrate conversion. *Journal of the American Chemical Society*, 2025, 147(50), 45861-45870. DOI: 10.1021/jacs.5c07315
- [14] Gust D, Moore TA, Moore AL. Solar fuels via artificial photosynthesis. *Accounts of Chemical Research*, 2009, 42(12), 1890-1898. DOI: 10.1021/ar900209b
- [15] Gust D, Moore TA, Moore AL. Realizing artificial photosynthesis. *Faraday Discussions*, 2012, 155, 9-26. DOI: 10.1039/c1fd00110h
- [16] Du J, Dang X, Zhao H. Photo-enzyme cascade catalysis treatment of bisphenol A in water: Synergistic hydroxylation pathway for mineralization and detoxification. *Journal of Hazardous Materials*, 2025, 489, 137454. DOI: 10.1016/j.jhazmat.2025.137454
- [17] Sharma P, Kumar A, Wang T, Sillanpää M, Sharma G, Dhiman P. Advances in bimetallic metal organic frameworks (BMOFs) based photocatalytic materials for energy production and waste water treatment. *Frontiers of Environmental Science & Engineering*, 2024, 18(12), 151. DOI: 10.1007/s11783-024-1911-5

[18] Zhou J, Cheng J, Xu H. Recent progress in developing conjugated polymer-microorganism biohybrids for semi-artificial photosynthetic energy conversion. *Macromolecular Rapid Communications*, 2025, 2500234. DOI: 10.1002/marc.202500234

[19] Ge J, Fan Y, Hu J, Wu Q, Zhu M, Wang H, et al. Assembling a single active pocket by enzyme and metal modules for simultaneously catalyzing oxidation-reduction cascades. *Research Square*, 2025, in preprint. DOI: 10.21203/rs.3.rs-6659547/v1

[20] Cai J, Zhao L, He C, Li Y, Duan C. A host-guest semibiological photosynthesis system coupling artificial and natural enzymes for solar alcohol splitting. *Nature Communications*, 2021, 12(1), 5092. DOI: 10.1038/s41467-021-25362-4

[21] Yu Y, Wu D, Liu D, Zhang J, Xie L, Feng Q, et al. Self-assembled bacterial cellulose-based photo-enzyme coupled system enabled by visible light-driven for efficient dye degradation. *Bioresource Technology*, 2024, 411, 131324. DOI: 10.1016/j.biortech.2024.131324

[22] Nadar NR, Rego RM, Kumar GD, Rao HJ, Pai RK, Kurkuri MD. Demystifying the influence of design parameters of nature-inspired materials for supercapacitors. *Journal of Energy Storage*, 2023, 72, 108670. DOI: 10.1016/j.est.2023.108670

[23] Luo S, Yang L, Zou Q, Yuan D, Xu S, Zhao Y, et al. Rapid suture-free repair of arterial bleeding: A novel approach with ultra-thin bioadhesive hydrogel membrane. *Chemical Engineering Journal*, 2023, 472, 144865. DOI: 10.1016/j.cej.2023.144865

[24] Zheng D, Zhang Y, Liu X, Wang J. Coupling natural systems with synthetic chemistry for light-driven enzymatic biocatalysis. *Photosynthesis Research*, 2020, 143(2), 221-231. DOI: 10.1007/s11120-019-00660-7

[25] Carotenuto MR, Cavallaro G, Chinnici I, Lazzara G, Milioto S. Hybrid green materials obtained by PCL melt blending with diatomaceous earth. *Molecules*, 2024, 29(6), 1203. DOI: 10.3390/molecules29061203

[26] Zhang Q, Li Y, Song J, Zhang X, Wu X, Liu C, et al. Study on preparation and thermal properties of new inorganic eutectic binary composite phase change materials. *RSC Advances*, 2023, 13(25), 16837-16849. DOI: 10.1039/D3RA01118F

[27] Ide Y, Matsukawa Y. Fabrication of functional diatomaceous earth with enhanced papain enzyme adsorption. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2024, 701, 134888. DOI: 10.1016/j.colsurfa.2024.134888

[28] Przybek A. Assessment of physico-chemical behavior and sorptivity—diatomaceous earth as support for paraffinic phase-change materials. *Materials*, 2024, 17(19), 4691. DOI: 10.3390/ma17194691

[29] Deaconu M, Abduraman A, Brezoiu AM, Sedky NK, Ioniță S, Matei C, et al. Anti-inflammatory, antidiabetic, and antioxidant properties of extracts prepared from pinot noir grape marc, free and incorporated in porous silica-based supports. *Molecules*, 2024, 29(13), 3122. DOI: 10.3390/molecules29133122

[30] Zhao D, Zhou Y, Wang H, Xing F, Zhou J. Covalent organic frameworks for lipase adsorption: A multiscale simulation. *Colloids and Surfaces B: Biointerfaces*, 2025, 114843. DOI: 10.1016/j.colsurfb.2025.114843

[31] Wang H, Jiao F, Gao F, Zhao X, Zhao Y, Shen Y, et al. Covalent organic framework-coated magnetic graphene as a novel support for trypsin immobilization. *Analytical and Bioanalytical Chemistry*, 2017, 409(8), 2179-2187. DOI: 10.1007/s00216-016-0163-z

[32] Silva AR, Alexandre JY, Souza JE, Neto JG, de Sousa Júnior PG, Rocha MV, et al. The chemistry and applications of metal-organic frameworks (MOFs) as industrial enzyme immobilization systems. *Molecules*, 2022, 27(14), 4529. DOI: 10.3390/molecules27144529

[33] Chen WH, Vázquez-González M, Zoabi A, Abu-Reziq R, Willner I. Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles. *Nature Catalysis*, 2018, 1(9), 689-695. DOI: 10.1038/s41929-018-0117-2

[34] Atiroğlu V, Atiroğlu A, Özcar M. Immobilization of α -amylase enzyme on a protein@ metal-organic framework nanocomposite: A new strategy to develop the reusability and stability of the enzyme, *Food Chemistry*, 2021, 349, 129127. DOI: 10.1016/j.foodchem.2021.129127

[35] Li WJ, Li YM, Ren H, Ji CY, Cheng L. Improving the bioactivity and stability of embedded enzymes by covalent organic frameworks. *ACS Applied Materials & Interfaces*, 2023, 15(37), 43580-43590. DOI: 10.1021/acsami.3c09459

[36] Saeed A, Hussain D, Saleem S, Mehdi S, Javeed R, Jabeen F, et al. Metal-organic framework-based affinity materials in proteomics. *Analytical and Bioanalytical Chemistry*, 2019, 411(9), 1745-1759. DOI: 10.1007/s00216-019-01610-x

[37] Liang H, Xu H, Zhao Y, Zheng J, Zhao H, Li G, et al. Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier. *Biosensors and Bioelectronics*, 2019, 144, 111691. DOI: 10.1016/j.bios.2019.111691

[38] Wu Z, Shan H, Jiao Y, Huang S, Wang X, Liang K, et al. Covalent organic networks for in situ entrapment of enzymes with superior robustness and durability. *Chemical Engineering Journal*, 2022, 450, 138446. DOI: 10.1016/j.cej.2022.138446

[39] Liang J, Ruan J, Njegic B, Rawal A, Scott J, Xu J, et al. Insight into bioactivity of in-situ trapped enzyme-covalent-organic frameworks. *Angewandte Chemie International Edition*, 2023, 62(23), e202303001. DOI: 10.1002/anie.202303001

[40] Abdel-Mageed HM. Frontiers in nanoparticles redefining enzyme immobilization: A review addressing challenges, innovations, and unlocking sustainable future potentials. *Micro and Nano Systems Letters*, 2025, 13(1), 7. DOI: 10.1186/s40486-025-00228-2

[41] Elmerhi N, Al-Maqdi K, Athamneh K, Mohammed AK, Skorjanc T, Gándara F, et al. Enzyme-immobilized hierarchically porous covalent organic framework biocomposite for catalytic degradation of broad-range emerging pollutants in water. *Journal of Hazardous Materials*, 2023, 459, 132261. DOI: 10.1016/j.jhazmat.2023.132261

[42] Sun Q, Fu CW, Aguila B, Perman J, Wang S, Huang HY, et al. Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks. *Journal of the American Chemical Society*, 2018, 140(3), 984-992. DOI: 10.1021/jacs.7b10642

[43] He L, Lu X, Xu Y, Yang Z, Zhang J, Li C, et al. Fabrication of Fe-doped UiO-66-NH₂@ b-TiO₂ Z-scheme heterojunction for enhanced visible light-driven degradation of VSCs and antibiotics. *Environmental Research*, 2025, 276, 121498. DOI: 10.1016/j.envres.2025.121498

[44] Zhu TY, Zhao YC, Sha C, Nawab S, Liu JY, Yong YC. Enhanced hydrogen production by robust covalent biohybrid based on cell membrane specific click chemistry. *Bioresource Technology*, 2025, 427, 132410. DOI: 10.1016/j.biortech.2025.132410

[45] Hammarström L. Artificial photosynthesis and solar fuels. *Accounts of Chemical Research*, 2009, 42(12), 1859-1860. DOI: 10.1021/ar900267k

[46] Zheng D, Zheng Y, Tan J, Zhang Z, Huang H, Chen Y. Co-immobilization of whole cells and enzymes by covalent organic framework for biocatalysis process intensification. *Nature Communications*, 2024, 15(1), 5510. DOI: 10.1038/s41467-024-49831-8

[47] Oliveira FL, de Souza SP, Bassut J, Álvarez HM, Garcia-Basabe Y, Alves de Souza RO, et al. Enzyme-decorated covalent

organic frameworks as nanoporous platforms for heterogeneous biocatalysis. *Chemistry—A European Journal*, 2019, 25(69), 15863-15870. DOI: 10.1002/chem.201903807

[48] Gao R, Kou X, Tong L, Li ZW, Shen Y, He R, et al. Ionic liquid-mediated dynamic polymerization for facile aqueous-phase synthesis of enzyme-covalent organic framework biocatalysts. *Angewandte Chemie International Edition*, 2024, 63(8), e202319876. DOI: 10.1002/anie.202319876

[49] Lou X, Zhang C, Xu Z, Ge S, Zhou J, Qin D, et al. Enhanced interfacial electron transfer in photocatalyst-natural enzyme coupled artificial photosynthesis system: Tuning strategies and molecular simulations. *Small*, 2024, 20(44), 2404055. DOI: 10.1002/smll.202404055

[50] Ren S, Feng Y, Wen H, Li C, Sun B, Cui J, et al. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO₂ sequestration. *International Journal of Biological Macromolecules*, 2018, 117, 189-198. DOI: 10.1016/j.ijbiomac.2018.05.173

[51] Liu Y, Pulignani C, Webb S, Cobb SJ, Rodríguez-Jiménez S, Kim D, et al. Electrostatic [FeFe]-hydrogenase-carbon nitride assemblies for efficient solar hydrogen production. *Chemical Science*, 2024, 15(16), 6088-6094. DOI: 10.1039/D4SC00640B

[52] Nadar SS, Vaidya L, Rathod VK. Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization. *International Journal of Biological Macromolecules*, 2020, 149, 861-876. DOI: 10.1016/j.ijbiomac.2020.01.240

[53] Zhao H, Liu G, Liu Y, Liu X, Wang H, Chen H, et al. Metal nanoparticles@ covalent organic framework@ enzymes: A universal platform for fabricating a metal-enzyme integrated nanocatalyst. *ACS Applied Materials & Interfaces*, 2022, 14(2), 2881-2892. DOI: 10.1021/acsami.1c21264

[54] Ren S, Wang F, Gao H, Han X, Zhang T, Yuan Y, et al. Recent progress and future prospects of laccase immobilization on MOF supports for industrial applications. *Applied Biochemistry and Biotechnology*, 2024, 196(3), 1669-1684. DOI: 10.1007/s12010-023-04607-6

[55] Altundal OF, Haslak ZP, Keskin S. Combined GCMC, MD, and DFT approach for unlocking the performances of COFs for methane purification. *Industrial & Engineering Chemistry Research*, 2021, 60(35), 12999-13012. DOI: 10.1021/acs.iecr.1c01742

[56] Grunenberg L, Keßler C, Teh TW, Schuldt R, Heck F, Kästner J, et al. Probing self-diffusion of guest molecules in a covalent organic framework: Simulation and experiment. *ACS Nano*, 2024, 18(25), 16091-16100. DOI: 10.1021/acsnano.3c12167

[57] Fang G, Bao SX, Zhou GX, Ge CC. Activity regulation and applications of metal-organic framework-based nanozymes. *Rare Metals*, 2024, 43(3), 900-914. DOI: 10.1007/s12598-023-02311-2

[58] Warshel A, Levitt M. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. *Journal of Molecular Biology*, 1976, 103(2), 227-249. DOI: 10.1016/0022-2836(76)90311-9

[59] Van Der Kamp MW, Mulholland AJ. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. *Biochemistry*, 2013, 52(16), 2708-2728. DOI: 10.1021/bi400215w

[60] Ranaghan KE, Mulholland AJ. Investigations of enzyme-catalysed reactions with combined quantum mechanics/molecular mechanics (QM/MM) methods. *International Reviews in Physical Chemistry*, 2010, 29(1), 65-133. DOI: 10.1080/01442350903495417

[61] Zainal Z, Hui LK, Hussein MZ, Abdullah AH. Characterization of TiO₂-chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process. *Journal of Hazardous Materials*, 2009, 164(1), 138-145. DOI: 10.1016/j.jhazmat.2008.07.154

[62] Li Q, Lu H, Cheng M, Meckenstock RU, Zhou J, Zhang H. Insights into the direct photoelectron transfer mechanism in cofactor-free redox carbon dots and cytochrome c nitrite reductase biohybrids responsible for ammonia synthesis. *Environmental Science & Technology*, 2025, 59(13), 6686-6695. DOI: 10.1021/acs.est.4c14310

[63] Yoon T, Park W, Kim Y, Na S. Electric field-mediated regulation of enzyme orientation for efficient electron transfer at the bioelectrode surface: A molecular dynamics study. *Applied Surface Science*, 2023, 608, 155124. DOI: 10.1016/j.apsusc.2022.155124

[64] Lousa D, Baptista AM, Soares CM. Analyzing the molecular basis of enzyme stability in ethanol/water mixtures using molecular dynamics simulations. *Journal of Chemical Information And Modeling*, 2012, 52(2), 465-473. DOI: 10.1021/ci200455z

[65] Yuan R, He Y, Tang B, He H. Enzyme-immobilized spherical covalent organic frameworks as nanoreactors for heterogeneous biocatalysis. *CrystEngComm*, 2023, 25(25), 3604-3608. DOI: 10.1039/D3CE00274H

[66] Zhu Q, Zheng Y, Zhang Z, Chen Y. Enzyme immobilization on covalent organic framework supports. *Nature Protocols*, 2023, 18(10), 3080-3125. DOI: 10.1038/s41596-023-00868-x

[67] Aggrey P, Nartey M, Kan Y, Cvjetinovic J, Andrews A, Salimon AI, et al. On the diatomite-based nanostructure-preserving material synthesis for energy applications. *RSC Advances*, 2021, 11(51), 31884-31922. DOI: 10.1039/D1RA05810J

[68] Zheng H, Lin H, Tian H, Lin K, Yang F, Zhang X, et al. Steering piezocatalytic therapy for optimized tumoricidal effect. *Advanced Functional Materials*, 2024, 34(33), 2400174. DOI: 10.1002/adfm.202400174

[69] Kim D, Sakimoto KK, Hong D, Yang P. Artificial photosynthesis for sustainable fuel and chemical production. *Angewandte Chemie International Edition*, 2015, 54(11), 3259-3266. DOI: 10.1002/anie.201409116

[70] Torkzadeh-Mahani M, Zaboli M, Barani M, Torkzadeh-Mahani M. A combined theoretical and experimental study to improve the thermal stability of recombinant D-lactate dehydrogenase immobilized on a novel superparamagnetic Fe₃O₄NPs@ metal-organic framework. *Applied Organometallic Chemistry*, 2020, 34(5), e5581. DOI: 10.1002/aoc.5581

[71] Chen Y, Han S, Li X, Zhang Z, Ma S. Why does enzyme not leach from metal-organic frameworks (MOFs)? Unveiling the interactions between an enzyme molecule and a MOF. *Inorganic Chemistry*, 2014, 53(19), 10006-10008. DOI: 10.1021/ic501062r

[72] Liu X, Duan X, Wei W, Wang S, Ni BJ. Photocatalytic conversion of lignocellulosic biomass to valuable products. *Green Chemistry*, 2019, 21(16), 4266-4289. DOI: 10.1039/C9GC01728C

[73] Tajik S, Beitollahi H, Nejad FG, Kirlikovali KO, Van Le Q, Jang HW, et al. Recent electrochemical applications of metal-organic framework-based materials. *Crystal Growth & Design*, 2020, 20(10), 7034-7064. DOI: 10.1021/acs.cgd.0c00601

[74] Feng Y, Xu Y, Liu S, Wu D, Su Z, Chen G, et al. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. *Coordination Chemistry Reviews*, 2022, 459, 214414. DOI:

10.1016/j.ccr.2022.214414

[75] Gorle DB, Ponnada S, Kiai MS, Nair KK, Nowduri A, Swart HC, et al. Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors. *Journal of Materials Chemistry B*, 2021, 9(38), 7927-7954. DOI: 10.1039/D1TB01403J

[76] Liang H, Wang L, Yang Y, Song Y, Wang L. A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework. *Biosensors and Bioelectronics*, 2021, 193, 113553. DOI: 10.1016/j.bios.2021.113553

[77] Cui J, Feng Y, Lin T, Tan Z, Zhong C, Jia S. Mesoporous metal-organic framework with well-defined cruciate flower-like morphology for enzyme immobilization. *ACS Applied Materials & Interfaces*, 2017, 9(12), 10587-10594. DOI: 10.1021/acsami.7b00512

[78] Yu C, Liu Y, Fu L, Shu Z, Duan M, Zheng Y. The effect of the allosteric regulation on the catalytic activity of fructosyltransferase studied via molecular dynamics simulations. *Physical Chemistry Chemical Physics*, 2025, 27(8), 4253-4262. DOI: 10.1039/D4CP04131C

[79] Chavoshpour-Natanzi Z, Farzi N. Enhancing thermal stability of cytochrome c enzyme via IR-MOF-74-VI encapsulation: Insights from molecular dynamics simulations. *Surfaces and Interfaces*, 2025, 59, 105933. DOI: 10.1016/j.surfin.2025.105933

[80] Zhou ZW, Cai CX, Xing X, Li J, Hu ZE, Xie ZB, et al. Magnetic COFs as satisfactory support for lipase immobilization and recovery to effectively achieve the production of biodiesel by maintenance of enzyme activity. *Biotechnology for Biofuels*, 2021, 14(1), 156. DOI: 10.1186/S13068-021-02001-0

[81] Oliveira FL, de S. França A, de Castro AM, Alves de Souza RO, Esteves PM, Gonçalves RS. Enzyme immobilization in covalent organic frameworks: Strategies and applications in biocatalysis. *ChemPlusChem*, 2020, 85(9), 2051-2066. DOI: 10.1002/cplu.202000549

[82] Qiao S, Jin H, Zuo A, Chen Y. Integration of enzyme and covalent organic frameworks: From rational design to applications. *Accounts of Chemical Research*, 2023, 57(1), 93-105. DOI: 10.1021/acs.accounts.3c00565

[83] Jin C, Li N, Lin E, Chen X, Wang T, Wang Y, et al. Enzyme immobilization in porphyrinic covalent organic frameworks for photoenzymatic asymmetric catalysis. *ACS Catalysis*, 2022, 12(14), 8259-8268. DOI: 10.1021/acscatal.2c01114

[84] Wang S, Xia X, Chen FE. Engineering of covalent organic framework-based advanced platforms for enzyme immobilization: Strategies, research progress, and prospects. *Advanced Materials Interfaces*, 2022, 9(29), 2200874. DOI: 10.1002/admi.202200874

[85] Sicard C. In situ enzyme immobilization by covalent organic frameworks. *Angewandte Chemie*, 2023, 135(1), e202213405. DOI: 10.1002/ange.202213405

[86] Zheng Y, Zhang S, Guo J, Shi R, Yu J, Li K, et al. Green and scalable fabrication of high-performance biocatalysts using covalent organic frameworks as enzyme carriers. *Angewandte Chemie International Edition*, 2022, 61(39), e202208744. DOI: 10.1002/anie.202208744