Molecular Simulation of Enzyme Adsorption and Immobilization in MIL-53(Fe)-Based Covalent Organic Frameworks

Authors

  • Fuad Abdullah School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China Author

DOI:

https://doi.org/10.64229/7n7qs610

Keywords:

Molecular simulation, Enzyme immobilization, Covalent organic framework, Density functional theory

Abstract

This study investigates enzyme adsorption in covalent organic frameworks (COFs) using molecular simulations. Laccase was immobilized on MIL-53(Fe) and NH₂-MIL-53(Fe) frameworks to develop visible-light-responsive biocatalysts. Molecular dynamics (MD) and density functional theory (DFT) analyses revealed that enzyme immobilization significantly enhanced electron transfer (ET) between the photocatalyst and the enzyme’s active site, promoting efficient charge separation and interfacial electron mobility. Electron spin resonance spectroscopy and free energy calculations demonstrated that visible light improved photogenerated ET, increasing tetracycline degradation rate constant from 0.0062 to 0.0127 min⁻¹. Morphological analysis showed MIL-53(Fe) possessed a stable octahedral crystalline structure with ~400 nm border length, ideal for enzyme binding. The binding free energy of -356 kcal/mol indicated thermodynamically favorable and strong enzyme-framework interactions. Furthermore, covalent immobilization improved laccase’s structural stability and preserved its native conformation compared to physisorption, facilitating access to the active site. Overall, this work highlights that COF-based enzyme immobilization offers a stable and highly active platform for enhanced photocatalytic degradation and environmental remediation applications.

References

[1]Yang N, Tian Y, Zhang M, Peng X, Li F, Li J, et al. Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnology Advances, 2022, 54, 107808. DOI: 10.1016/j.biotechadv.2021.107808

[2]Tong L, Huang S, Chen G, Ouyang G. Integrating enzymes with reticular frameworks to govern biocatalysis. Angewandte Chemie International Edition, 2025, 64(8), e202421192. DOI: 10.1002/anie.202421192

[3]Liu Y, Zhang H, Lang F, Li M, Pang J, Bu XH. Enzyme‐photocoupled catalytic systems based on zirconium‐metal‐organic frameworks. ChemSusChem, 2025, 18(12), e202402760. DOI: 10.1002/cssc.202402760

[4]Berardi S, Drouet S, Francàs L, Gimbert-Suriñach C, Guttentag M, Richmond C, et al. Molecular artificial photosynthesis. Chemical Society Reviews, 2014, 43(22), 7501-7519. DOI: 10.1039/c3cs60405e

[5]Dogutan DK, Nocera DG. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Accounts of Chemical Research, 2019, 52(11), 3143-3148. DOI: 10.1021/acs.accounts.9b00380

[6]Arora N, Flores C, Senarathna MC, Thompson CM, Smaldone RA. Design, synthesis, and applications of mesoporous covalent organic frameworks. CCS Chemistry, 2024, 6(1), 57-68. DOI: 10.31635/ccschem.023.202303261

[7]Tan Y, Ma J, Zhang F, Wang S, Lan F, Liu H, et al. Polymer photocatalyst__enzyme coupled artificial photosynthesis system for CO2 reduction into formate using water as the electron donor. ACS Sustainable Chemistry & Engineering, 2022, 10(37), 12065-12071. DOI: 10.1021/acssuschemeng.2c02199

[8]Gan J, Bagheri AR, Aramesh N, Gul I, Franco M, Almulaiky YQ, et al. Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis__A review. International Journal of Biological Macromolecules, 2021, 167, 502-515. DOI: 10.1016/j.ijbiomac.2020.12.002

[9]Aggarwal S, Chakravarty A, Ikram S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. International Journal of Biological Macromolecules, 2021, 167, 962-986. DOI: 10.1016/j.ijbiomac.2020.11.052

[10]Balah MA, Pudake RN. Use nanotools for weed control and exploration of weed plants in nanotechnology. Nanoscience for Sustainable Agriculture, 2019, 207-231. DOI: 10.1007/978-3-319-97852-9_10

[11]Hocaoglu SM, Mohamad Idris AI, Basturk I, Partal R. Preparation of TiO2-diatomite composites and photocatalytic degradation of dye wastewater. International Journal of Environmental Science and Technology, 2023, 20(10), 10887-10902. DOI: 10.1007/S13762-023-05050-0

[12]Bilal M, Fernandes CD, Mehmood T, Nadeem F, Tabassam Q, Ferreira LF. Immobilized lipases-based nano-biocatalytic systems__A versatile platform with incredible biotechnological potential. International Journal of Biological Macromolecules, 2021, 175, 108-122. DOI: 10.1016/j.ijbiomac.2021.02.010

[13]Bian J, Zhao J, Zhang Z, Liu D, Lan X, Liao Y, et al. Bioinspired Fe single-atom nanozyme synergizes with natural NarGH dimer for high-efficiency photobiocatalytic nitrate conversion. Journal of the American Chemical Society, 2025, 147(50), 45861-45870. DOI: 10.1021/jacs.5c07315

[14]Gust D, Moore TA, Moore AL. Solar fuels via artificial photosynthesis. Accounts of Chemical Research, 2009, 42(12), 1890-1898. DOI: 10.1021/ar900209b

[15]Gust D, Moore TA, Moore AL. Realizing artificial photosynthesis. Faraday Discussions, 2012, 155, 9-26. DOI: 10.1039/c1fd00110h

[16]Du J, Dang X, Zhao H. Photo-enzyme cascade catalysis treatment of bisphenol A in water: Synergistic hydroxylation pathway for mineralization and detoxification. Journal of Hazardous Materials, 2025, 489, 137454. DOI: 10.1016/j.jhazmat.2025.137454

[17]Sharma P, Kumar A, Wang T, Sillanpää M, Sharma G, Dhiman P. Advances in bimetallic metal organic frameworks (BMOFs) based photocatalytic materials for energy production and waste water treatment. Frontiers of Environmental Science & Engineering, 2024, 18(12), 151. DOI: 10.1007/s11783-024-1911-5

[18]Zhou J, Cheng J, Xu H. Recent progress in developing conjugated polymer‐microorganism biohybrids for semi‐artificial photosynthetic energy conversion. Macromolecular Rapid Communications, 2025, 2500234. DOI: 10.1002/marc.202500234

[19]Ge J, Fan Y, Hu J, Wu Q, Zhu M, Wang H, et al. Assembling a single active pocket by enzyme and metal modules for simultaneously catalyzing oxidation-reduction cascades. Research Square, 2025, in preprint. DOI: 10.21203/rs.3.rs-6659547/v1

[20]Cai J, Zhao L, He C, Li Y, Duan C. A host-guest semibiological photosynthesis system coupling artificial and natural enzymes for solar alcohol splitting. Nature Communications, 2021, 12(1), 5092. DOI: 10.1038/s41467-021-25362-4

[21]Yu Y, Wu D, Liu D, Zhang J, Xie L, Feng Q, et al. Self-assembled bacterial cellulose-based photo-enzyme coupled system enabled by visible light-driven for efficient dye degradation. Bioresource Technology, 2024, 411, 131324. DOI: 10.1016/j.biortech.2024.131324

[22]Nadar NR, Rego RM, Kumar GD, Rao HJ, Pai RK, Kurkuri MD. Demystifying the influence of design parameters of nature-inspired materials for supercapacitors. Journal of Energy Storage, 2023, 72, 108670. DOI: 10.1016/j.est.2023.108670

[23]Luo S, Yang L, Zou Q, Yuan D, Xu S, Zhao Y, et al. Rapid suture-free repair of arterial bleeding: A novel approach with ultra-thin bioadhesive hydrogel membrane. Chemical Engineering Journal, 2023, 472, 144865. DOI: 10.1016/j.cej.2023.144865

[24]Zheng D, Zhang Y, Liu X, Wang J. Coupling natural systems with synthetic chemistry for light-driven enzymatic biocatalysis. Photosynthesis Research, 2020, 143(2), 221-231. DOI: 10.1007/s11120-019-00660-7

[25]Carotenuto MR, Cavallaro G, Chinnici I, Lazzara G, Milioto S. Hybrid green materials obtained by PCL melt blending with diatomaceous earth. Molecules, 2024, 29(6), 1203. DOI: 10.3390/molecules29061203

[26]Zhang Q, Li Y, Song J, Zhang X, Wu X, Liu C, et al. Study on preparation and thermal properties of new inorganic eutectic binary composite phase change materials. RSC Advances, 2023, 13(25), 16837-16849. DOI: 10.1039/D3RA01118F

[27]Ide Y, Matsukawa Y. Fabrication of functional diatomaceous earth with enhanced papain enzyme adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 701, 134888. DOI: 10.1016/j.colsurfa.2024.134888

[28]Przybek A. Assessment of physico-chemical behavior and sorptivity__diatomaceous earth as support for paraffinic phase-change materials. Materials, 2024, 17(19), 4691. DOI: 10.3390/ma17194691

[29]Deaconu M, Abduraman A, Brezoiu AM, Sedky NK, Ioniță S, Matei C, et al. Anti-inflammatory, antidiabetic, and antioxidant properties of extracts prepared from pinot noir grape marc, free and incorporated in porous silica-based supports. Molecules, 2024, 29(13), 3122. DOI: 10.3390/molecules29133122

[30]Zhao D, Zhou Y, Wang H, Xing F, Zhou J. Covalent organic frameworks for lipase adsorption: A multiscale simulation. Colloids and Surfaces B: Biointerfaces, 2025, 114843. DOI: 10.1016/j.colsurfb.2025.114843

[31]Wang H, Jiao F, Gao F, Zhao X, Zhao Y, Shen Y, et al. Covalent organic framework-coated magnetic graphene as a novel support for trypsin immobilization. Analytical and Bioanalytical Chemistry, 2017, 409(8), 2179-2187. DOI: 10.1007/s00216-016-0163-z

[32]Silva AR, Alexandre JY, Souza JE, Neto JG, de Sousa Júnior PG, Rocha MV, et al. The chemistry and applications of metal-organic frameworks (MOFs) as industrial enzyme immobilization systems. Molecules, 2022, 27(14), 4529. DOI: 10.3390/molecules27144529

[33]Chen WH, Vázquez-González M, Zoabi A, Abu-Reziq R, Willner I. Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles. Nature Catalysis, 2018, 1(9), 689-695. DOI: 10.1038/s41929-018-0117-2

[34]Atiroğlu V, Atiroğlu A, Özacar M. Immobilization of α-amylase enzyme on a protein@ metal-organic framework nanocomposite: A new strategy to develop the reusability and stability of the enzyme, Food Chemistry, 2021, 349, 129127. DOI: 10.1016/j.foodchem.2021.129127

[35]Li WJ, Li YM, Ren H, Ji CY, Cheng L. Improving the bioactivity and stability of embedded enzymes by covalent organic frameworks. ACS Applied Materials & Interfaces, 2023, 15(37), 43580-43590. DOI: 10.1021/acsami.3c09459

[36]Saeed A, Hussain D, Saleem S, Mehdi S, Javeed R, Jabeen F, et al. Metal-organic framework-based affinity materials in proteomics. Analytical and Bioanalytical Chemistry, 2019, 411(9), 1745-1759. DOI: 10.1007/s00216-019-01610-x

[37]Liang H, Xu H, Zhao Y, Zheng J, Zhao H, Li G, et al. Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier. Biosensors and Bioelectronics, 2019, 144, 111691. DOI: 10.1016/j.bios.2019.111691

[38]Wu Z, Shan H, Jiao Y, Huang S, Wang X, Liang K, et al. Covalent organic networks for in situ entrapment of enzymes with superior robustness and durability. Chemical Engineering Journal, 2022, 450, 138446. DOI: 10.1016/j.cej.2022.138446

[39]Liang J, Ruan J, Njegic B, Rawal A, Scott J, Xu J, et al. Insight into bioactivity of in‐situ trapped enzyme‐covalent‐organic frameworks. Angewandte Chemie International Edition, 2023, 62(23), e202303001. DOI: 10.1002/anie.202303001

[40]Abdel-Mageed HM. Frontiers in nanoparticles redefining enzyme immobilization: A review addressing challenges, innovations, and unlocking sustainable future potentials. Micro and Nano Systems Letters, 2025, 13(1), 7. DOI: 10.1186/s40486-025-00228-2

[41]Elmerhi N, Al-Maqdi K, Athamneh K, Mohammed AK, Skorjanc T, Gándara F, et al. Enzyme-immobilized hierarchically porous covalent organic framework biocomposite for catalytic degradation of broad-range emerging pollutants in water. Journal of Hazardous Materials, 2023, 459, 132261. DOI: 10.1016/j.jhazmat.2023.132261

[42]Sun Q, Fu CW, Aguila B, Perman J, Wang S, Huang HY, et al. Pore environment control and enhanced performance of enzymes infiltrated in covalent organic frameworks. Journal of the American Chemical Society, 2018, 140(3), 984-992. DOI: 10.1021/jacs.7b10642

[43]He L, Lu X, Xu Y, Yang Z, Zhang J, Li C, et al. Fabrication of Fe-doped UiO-66-NH2@ b-TiO2 Z-scheme heterojunction for enhanced visible light-driven degradation of VSCs and antibiotics. Environmental Research, 2025, 276, 121498. DOI: 10.1016/j.envres.2025.121498

[44]Zhu TY, Zhao YC, Sha C, Nawab S, Liu JY, Yong YC. Enhanced hydrogen production by robust covalent biohybrid based on cell membrane specific click chemistry. Bioresource Technology, 2025, 427, 132410. DOI: 10.1016/j.biortech.2025.132410

[45]Hammarström L. Artificial photosynthesis and solar fuels. Accounts of Chemical Research, 2009, 42(12), 1859-1860. DOI: 10.1021/ar900267k

[46]Zheng D, Zheng Y, Tan J, Zhang Z, Huang H, Chen Y. Co-immobilization of whole cells and enzymes by covalent organic framework for biocatalysis process intensification. Nature Communications, 2024, 15(1), 5510. DOI: 10.1038/s41467-024-49831-8

[47]Oliveira FL, de Souza SP, Bassut J, Álvarez HM, Garcia‐Basabe Y, Alves de Souza RO, et al. Enzyme‐decorated covalent organic frameworks as nanoporous platforms for heterogeneous biocatalysis. Chemistry__A European Journal, 2019, 25(69), 15863-15870. DOI: 10.1002/chem.201903807

[48]Gao R, Kou X, Tong L, Li ZW, Shen Y, He R, et al. Ionic liquid‐mediated dynamic polymerization for facile aqueous‐phase synthesis of enzyme‐covalent organic framework biocatalysts. Angewandte Chemie International Edition, 2024, 63(8), e202319876. DOI: 10.1002/anie.202319876

[49]Lou X, Zhang C, Xu Z, Ge S, Zhou J, Qin D, et al. Enhanced interfacial electron transfer in photocatalyst‐natural enzyme coupled artificial photosynthesis system: Tuning strategies and molecular simulations. Small, 2024, 20(44), 2404055. DOI: 10.1002/smll.202404055

[50]Ren S, Feng Y, Wen H, Li C, Sun B, Cui J, et al. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration. International Journal of Biological Macromolecules, 2018, 117, 189-198. DOI: 10.1016/j.ijbiomac.2018.05.173

[51]Liu Y, Pulignani C, Webb S, Cobb SJ, Rodríguez-Jiménez S, Kim D, et al. Electrostatic [FeFe]-hydrogenase-carbon nitride assemblies for efficient solar hydrogen production. Chemical Science, 2024, 15(16), 6088-6094. DOI: 10.1039/D4SC00640B

[52]Nadar SS, Vaidya L, Rathod VK. Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization. International Journal of Biological Macromolecules, 2020, 149, 861-876. DOI: 10.1016/j.ijbiomac.2020.01.240

[53]Zhao H, Liu G, Liu Y, Liu X, Wang H, Chen H, et al. Metal nanoparticles@ covalent organic framework@ enzymes: A universal platform for fabricating a metal-enzyme integrated nanocatalyst. ACS Applied Materials & Interfaces, 2022, 14(2), 2881-2892. DOI: 10.1021/acsami.1c21264

[54]Ren S, Wang F, Gao H, Han X, Zhang T, Yuan Y, et al. Recent progress and future prospects of laccase immobilization on MOF supports for industrial applications. Applied Biochemistry and Biotechnology, 2024, 196(3), 1669-1684. DOI: 10.1007/s12010-023-04607-6

[55]Altundal OF, Haslak ZP, Keskin S. Combined GCMC, MD, and DFT approach for unlocking the performances of COFs for methane purification. Industrial & Engineering Chemistry Research, 2021, 60(35), 12999-13012. DOI: 10.1021/acs.iecr.1c01742

[56]Grunenberg L, Keßler C, Teh TW, Schuldt R, Heck F, Kästner J, et al. Probing self-diffusion of guest molecules in a covalent organic framework: Simulation and experiment. ACS Nano, 2024, 18(25), 16091-16100. DOI: 10.1021/acsnano.3c12167

[57]Fang G, Bao SX, Zhou GX, Ge CC. Activity regulation and applications of metal-organic framework-based nanozymes. Rare Metals, 2024, 43(3), 900-914. DOI: 10.1007/s12598-023-02311-2

[58]Warshel A, Levitt M. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. Journal of Molecular Biology, 1976, 103(2), 227-249. DOI: 10.1016/0022-2836(76)90311-9

[59]Van Der Kamp MW, Mulholland AJ. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry, 2013, 52(16), 2708-2728. DOI: 10.1021/bi400215w

[60]Ranaghan KE, Mulholland AJ. Investigations of enzyme-catalysed reactions with combined quantum mechanics/molecular mechanics (QM/MM) methods. International Reviews in Physical Chemistry, 2010, 29(1), 65-133. DOI: 10.1080/01442350903495417

[61]Zainal Z, Hui LK, Hussein MZ, Abdullah AH. Characterization of TiO2-chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process. Journal of Hazardous Materials, 2009, 164(1), 138-145. DOI: 10.1016/j.jhazmat.2008.07.154

[62]Li Q, Lu H, Cheng M, Meckenstock RU, Zhou J, Zhang H. Insights into the direct photoelectron transfer mechanism in cofactor-free redox carbon dots and cytochrome c nitrite reductase biohybrids responsible for ammonia synthesis. Environmental Science & Technology, 2025, 59(13), 6686-6695. DOI: 10.1021/acs.est.4c14310

[63]Yoon T, Park W, Kim Y, Na S. Electric field-mediated regulation of enzyme orientation for efficient electron transfer at the bioelectrode surface: A molecular dynamics study. Applied Surface Science, 2023, 608, 155124. DOI: 10.1016/j.apsusc.2022.155124

[64]Lousa D, Baptista AM, Soares CM. Analyzing the molecular basis of enzyme stability in ethanol/water mixtures using molecular dynamics simulations. Journal of Chemical Information And Modeling, 2012, 52(2), 465-473. DOI: 10.1021/ci200455z

[65]Yuan R, He Y, Tang B, He H. Enzyme-immobilized spherical covalent organic frameworks as nanoreactors for heterogeneous biocatalysis. CrystEngComm, 2023, 25(25), 3604-3608. DOI: 10.1039/D3CE00274H

[66]Zhu Q, Zheng Y, Zhang Z, Chen Y. Enzyme immobilization on covalent organic framework supports. Nature Protocols, 2023, 18(10), 3080-3125. DOI: 10.1038/s41596-023-00868-x

[67]Aggrey P, Nartey M, Kan Y, Cvjetinovic J, Andrews A, Salimon AI, et al. On the diatomite-based nanostructure-preserving material synthesis for energy applications. RSC Advances, 2021, 11(51), 31884-31922. DOI: 10.1039/D1RA05810J

[68]Zheng H, Lin H, Tian H, Lin K, Yang F, Zhang X, et al. Steering piezocatalytic therapy for optimized tumoricidal effect. Advanced Functional Materials, 2024, 34(33), 2400174. DOI: 10.1002/adfm.202400174

[69]Kim D, Sakimoto KK, Hong D, Yang P. Artificial photosynthesis for sustainable fuel and chemical production. Angewandte Chemie International Edition, 2015, 54(11), 3259-3266. DOI: 10.1002/anie.201409116

[70]Torkzadeh‐Mahani M, Zaboli M, Barani M, Torkzadeh‐Mahani M. A combined theoretical and experimental study to improve the thermal stability of recombinant D‐lactate dehydrogenase immobilized on a novel superparamagnetic Fe3O4NPs@ metal-organic framework. Applied Organometallic Chemistry, 2020, 34(5), e5581. DOI: 10.1002/aoc.5581

[71]Chen Y, Han S, Li X, Zhang Z, Ma S. Why does enzyme not leach from metal-organic frameworks (MOFs)? Unveiling the interactions between an enzyme molecule and a MOF. Inorganic Chemistry, 2014, 53(19), 10006-10008. DOI: 10.1021/ic501062r

[72]Liu X, Duan X, Wei W, Wang S, Ni BJ. Photocatalytic conversion of lignocellulosic biomass to valuable products. Green Chemistry, 2019, 21(16), 4266-4289. DOI: 10.1039/C9GC01728C

[73]Tajik S, Beitollahi H, Nejad FG, Kirlikovali KO, Van Le Q, Jang HW, et al. Recent electrochemical applications of metal-organic framework-based materials. Crystal Growth & Design, 2020, 20(10), 7034-7064. DOI: 10.1021/acs.cgd.0c00601

[74]Feng Y, Xu Y, Liu S, Wu D, Su Z, Chen G, et al. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coordination Chemistry Reviews, 2022, 459, 214414. DOI: 10.1016/j.ccr.2022.214414

[75]Gorle DB, Ponnada S, Kiai MS, Nair KK, Nowduri A, Swart HC, et al. Review on recent progress in metal-organic framework-based materials for fabricating electrochemical glucose sensors. Journal of Materials Chemistry B, 2021, 9(38), 7927-7954. DOI: 10.1039/D1TB01403J

[76]Liang H, Wang L, Yang Y, Song Y, Wang L. A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework. Biosensors and Bioelectronics, 2021, 193, 113553. DOI: 10.1016/j.bios.2021.113553

[77]Cui J, Feng Y, Lin T, Tan Z, Zhong C, Jia S. Mesoporous metal-organic framework with well-defined cruciate flower-like morphology for enzyme immobilization. ACS Applied Materials & Interfaces, 2017, 9(12), 10587-10594. DOI: 10.1021/acsami.7b00512

[78]Yu C, Liu Y, Fu L, Shu Z, Duan M, Zheng Y. The effect of the allosteric regulation on the catalytic activity of fructosyltransferase studied via molecular dynamics simulations. Physical Chemistry Chemical Physics, 2025, 27(8), 4253-4262. DOI: 10.1039/D4CP04131C

[79]Chavoshpour-Natanzi Z, Farzi N. Enhancing thermal stability of cytochrome c enzyme via IR-MOF-74-VI encapsulation: Insights from molecular dynamics simulations. Surfaces and Interfaces, 2025, 59, 105933. DOI: 10.1016/j.surfin.2025.105933

[80]Zhou ZW, Cai CX, Xing X, Li J, Hu ZE, Xie ZB, et al. Magnetic COFs as satisfactory support for lipase immobilization and recovery to effectively achieve the production of biodiesel by maintenance of enzyme activity. Biotechnology for Biofuels, 2021, 14(1), 156. DOI: 10.1186/S13068-021-02001-0

[81]Oliveira FL, de S. França A, de Castro AM, Alves de Souza RO, Esteves PM, Gonçalves RS. Enzyme immobilization in covalent organic frameworks: Strategies and applications in biocatalysis. ChemPlusChem, 2020, 85(9), 2051-2066. DOI: 10.1002/cplu.202000549

[82]Qiao S, Jin H, Zuo A, Chen Y. Integration of enzyme and covalent organic frameworks: From rational design to applications. Accounts of Chemical Research, 2023, 57(1), 93-105. DOI: 10.1021/acs.accounts.3c00565

[83]Jin C, Li N, Lin E, Chen X, Wang T, Wang Y, et al. Enzyme immobilization in porphyrinic covalent organic frameworks for photoenzymatic asymmetric catalysis. ACS Catalysis, 2022, 12(14), 8259-8268. DOI: 10.1021/acscatal.2c01114

[84]Wang S, Xia X, Chen FE. Engineering of covalent organic framework‐based advanced platforms for enzyme immobilization: Strategies, research progress, and prospects. Advanced Materials Interfaces, 2022, 9(29), 2200874. DOI: 10.1002/admi.202200874

[85]Sicard C. In situ enzyme immobilization by covalent organic frameworks. Angewandte Chemie, 2023, 135(1), e202213405. DOI: 10.1002/ange.202213405

[86]Zheng Y, Zhang S, Guo J, Shi R, Yu J, Li K, et al. Green and scalable fabrication of high‐performance biocatalysts using covalent organic frameworks as enzyme carriers. Angewandte Chemie International Edition, 2022, 61(39), e202208744. DOI: 10.1002/anie.202208744

Downloads

Published

2026-01-21

Issue

Section

Articles

How to Cite

Abdullah, F. (2026). Molecular Simulation of Enzyme Adsorption and Immobilization in MIL-53(Fe)-Based Covalent Organic Frameworks. Integrative Computational Science, 1(1), 1-13. https://doi.org/10.64229/7n7qs610